B.A. /B.Sc. Part-III (General) Examination, 2020 (1+1+1) Subject: Mathematics Paper: IV

(Linear Programming, Numerical Analysis, Computer Programming)

Time: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1.	Answer any four questions from the following:	4 × 5 = 20
	(a) Show that the set of all feasible solutions of a linear programming problem is a c	onvex set.
		5
	(b) Solve the system of linear equations by Gaussian elimination method	
	3x+ 2y +z=10, 2x+ 3y +2z=14, x+ 2y +3z=14	5
	(c) Write a program in C to find the L.C.M. of two given positive integers.	5
	(d) Distinguish between 'if-else' statement and 'else if' statement in C.	5
	(e) Solve the following assignment problem.	5

	а	b	с	d
1	18	26	17	11
2	13	28	14	26
3	38	19	18	15
4	19	26	24	10

(f) (i) Prove that
$$\Delta \log f(x) = \log \left\{ 1 + \frac{\Delta f(x)}{f(x)} \right\}$$
.

(ii) Find the relation between forward difference operator Δ and shift operator E 3+2

2. Answer any three questions from the following:

- (a) (i) Discuss the Gauss Seidel method for the solution of system of linear equations. State the condition of convergence for this method.
 - (ii) Obtain the Lagrange's interpolation formula. (5+1)+4

 $3 \times 10 = 30$

(b) Use Big-M method to solve the following LPP:

Maximize
$$z = 3 x_1 - x_2$$

subject to $2 x_1 + x_2 \ge 2$, $x_1 + 3 x_2 \le 3$, $x_2 \le 4$ and $x_1, x_2 \ge 0$ 10

- (c) (i) Write a program in C to find the roots of a quadratic equation with real coefficients.
 - (ii) Find the binary equivalent of $(8)_{10}$ and $(12.5)_{10}$ and hence obtain the addition, subtraction and multiplication of these two numbers in binary form. 5+5
- (d) Describe the Trapezoidal method for numerical integration. Find the error of this formula. Compute the integral $\int_0^2 x^3 dx$ using Trapezoidal rule by taking n=5. 4+2+4
- (e) (i) If a transportation problem has *m* origin and *n* destinations $(m, n \ge 2)$, then prove that the number of basic variables in that transportation problem is at most (m+n-1).
 - (ii) When is 'do while loop' used in C ? Write down its working principle. Mention the difference between 'break' and 'continue' statements with examples. 4+(1+2+3)