B.A. /B.Sc. Part-III (Honours) Examination, 2020 (1+1+1) Subject: Mathematics Paper: VII

Time: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1. Answer any 4 questions from the following: $4 \times 5 = 20$ $P(a < X \le b, c < Y \le d) = F(b, d) + F(a, c) - F(b, c) - F(a, d)$ (a) Prove that where F(x, y) denotes two-dimensional distribution function of (X, Y). 5 (b) The bivariate random variable (X, Y) follows the joint probability density function $f(x, y) = kx^{2}(8-y); x < y < 2x, 0 \le x \le 2$ = 0; elsewhere Find (i) the value of k, (ii) the marginal probability density function of X & Y and (iii) the conditional probability density function $f_{x/y}(x/y)$. 1 + 2 + 2(c) Obtain Bernoulli's theorem as a particular case of the law of large numbers for equal 5 components. (d) A radioactive source emits on the average 2.5 particles per second. Calculate the probability that 3 or more particles will be emitted in an interval of 4 seconds. 5 (e) Find the mean and variance of normal distribution. 2+3(f) If $a_1 \neq 0$, $a_2 \neq 0$, b_1 , b_2 are constants and $\rho(X, Y)$ be the corelation coefficient of X

and *Y*, then prove that
$$\rho(a_1X + b_1, a_2Y + b_2) = \frac{a_1a_2}{|a_1||a_2|}\rho(X, Y)$$
. 5

2. Answer any 2 questions from the following:

(a) Fit a curve of the form $y = x^2 + ax + b$ to the following data by the method of least squares:

x	2	3	4	5	6	
у	7.2	3.9	3.0	4.4	6.3	
						5

- (b) If X and Y are independent variates, X being χ^2 -distributed with m degrees of freedom and their sum X+Y is χ^2 - distributed with (m+n) degrees of freedom, then show that Y is χ^2 distributed with n degrees of freedom.
- (c) Find the maximum likelihood estimator of σ^2 for a normal (m, σ) population if *m* is known and show that the estimate is unbiased and consistent.

 $2 \times 5 = 10$

5

5

Page 1 of 2

(d) The random variable X can take all non-negative integral values and

$$P(X = i) = p(1-p)^{i}, i = 0,1,2....$$

where p(0 is a parameter. Find the maximum likelihood estimator of <math>p on the basis of a sample of size n from the population of X. 5

- 3. Answer any 4 questions from the following: $4 \times 5 = 20$
 - (a) Show that the set of all convex combinations of a finite number of points is a convex set. 5
- (b) Solve the following LPP graphically:

Maximize
$$z = 3x_1 + 2x_2$$

subject to $x_1 + x_2 \le 2$
 $x_1 + 4x_2 \le 4$
 $2x_1 + 3x_2 \le 6$
5

and $x_1, x_2 \ge 0$

(c) Formulate the dual of the following LPP:
Maximize
$$-2x + 2x + 4x$$

Maximize
$$z = 2x_1 + 3x_2 + 4x_3$$

subject to $x_1 - 5x_2 + 3x_3 = 7$
 $2x_1 - 5x_2 \le 3$
 $3x_1 - x_3 \ge 5$
5

 $x_1, x_2 \ge 0$ and x_3 is unrestricted in sign.

(d) Solve, if possible, by dual simplex method, the following LPP:

Minimize $z = 6x_1 + 11x_2$

subject to $x_1 + x_2 \ge 11$

$$2x_1 + 5x_2 \ge 40$$
 and $x_1, x_2 \ge 0$

(e) Find an initial basic feasible solution of the following transportation problem by Vogel's approximation method.

	D ₁	D_2	D ₃	D_4	Supply
O1	11	13	17	14	250
O_2	16	18	14	10	300
O ₃	21	24	13	10	400
Demand	200	225	275	250	950

(f) Solve the following game graphically:

Player A

	2	2	3	-1
Player B	4	3	2	6

5

5