B.A. /B.Sc. Part-III (Honours) Examination, 2020 (1+1+1) Subject: Mathematics Paper: VIII

The figures in the margin indicate full marks.

Time: 2 Hours

Candidates are required to write their answers in their own words as far as practice [Notation and Symbols have their usual meaning]	able.
 Answer <i>any seven</i> questions: 7× (a) Define relative error. Find the number of significant figures in the approxim number 0.4625 when the relative error is given by 0.2×10⁻². 	< 5 = 35 nate 2+3
 (b) Show that Newton-Raphson method has quadratic rate of convergence. (c) Describe the Gauss-Seidel iteration method of solving a system of linear equations. State the conditions for convergence of this method. (d) Establish Newton-Cotes' numerical integration formula (closed type). (e) Show that the sum of the Lagrangian coefficients is unity. 	5 4+1 5 5
 (f) Verify that the Simpson's 1/3 rule is exact for polynomial of degree less that equal to 3. (g) Prove that the <i>n</i>-th order divided difference of a polynomial of degree <i>n</i> is constant. (h) Define degree of precision of a quadrature formula. For any numerical quadrate formula with (<i>n</i>+1) nodes prove that it's degree of precision ≥ <i>n</i>. (i) Describe the bisection method to find a root of the equation <i>f</i>(<i>x</i>) = 0 when <i>f</i>(<i>a</i>) · <i>f</i>(<i>b</i>) < 0, <i>a</i>, <i>b</i> be two specified numbers. Is this condition necessary to root using this method ? Justify your answer. 	5 5 drature 2+3
2. Answer <i>any three</i> questions: 3×	< 5 = 15
(a) Using binary arithmetic, obtain the value of $(94.5)_{10}$ - $(43.75)_{10}$ after converte the numbers to binary forms.	erting 5
(b) For computing n!, write a program in C language. (c) Write the necessary C statements to evaluate $f(x) = \begin{cases} x^2 + \cos(2x), & \text{if } x < 2 \\ 4, & \text{if } x = 2 \\ x^3 + \sin(3x), & \text{if } x > 2 \end{cases}$	5
(d) Compare 'while', 'do-while' and 'for' loops in C.	5

(e) Write a program in C to compute the roots of a quadratic equation with real coefficients.

Full Marks: 50

B.A. /B.Sc. Part-III (Honours) Examination, 2020 (1+1+1) Subject: Mathematics (Old Syllabus) Paper: VIII

Time: 2 Hours

language.

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

2.	Answer any seven questions:	$7 \times 5 = 35$
	(j) Define relative error. Find the number of significant figures in the approximate number 0.4625 when the relative error is given by 0.2×10^{-2} .	timate 2+3
	(k) Show that Newton-Raphson method has quadratic rate of convergence.(l) Describe the Gauss-Seidel iteration method of solving a system of linear	5
	equations. State the conditions for convergence of this method.	4+1
	(m)Establish Newton-Cotes' numerical integration formula (closed type).	5
	(n) Show that the sum of the Lagrangian coefficients is unity.	5
	(o) Verify that the Simpson's 1/3 rule is exact for polynomial of degree less equal to 3.	than or 5
	(p) Prove that the n -th order divided difference of a polynomial of degree n i	
	constant. (q) Define degree of precision of a quadrature formula. For any numerical qu	5 Jadrature
	formula with $(n+1)$ nodes prove that it's degree of precision $\ge n$.	2+3
	(r) Describe the bisection method to find a root of the equation $f(x) = 0$ when $f(a) \cdot f(b) < 0$, <i>a</i> , <i>b</i> be two specified numbers. Is this condition necessary root using this method ? Justify your answer.	
	2. Answer any three questions:	$3 \times 5 = 15$
	(a) Write a FORTRAN program for computing $n!$ for a given positive integer	r n. 5
	(b)Translate the following mathematical expressions into FORTRAN equiva form:	
	(i) $\frac{x^3}{3}\log_e x-y - \left(\frac{ax+by}{cx+dy}\right)^{\frac{1}{3}},$	
	(ii) $x^{\frac{2}{3}} + y^{\frac{2}{3}} - e^{ x }$	5
	(c) Write a FORTRAN program to search for the prime numbers between 3 a	and 20. 5
	(d) Mention the advantages and disadvantages of assembly language over his	-

(e) Write a FORTRAN program to compute the roots of a quadratic equation with real coefficients. 5

5